
Rascal: A One-Stop-Shop for Program Analysis
and Transformation

Mark Hills

SET Seminar
November 20, 2012
Eindhoven, The Netherlands

http://www.rascal-mpl.org

Tuesday, November 20, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Rascal: A Meta-Programming One-Stop-Shop

• Context: wide variety of programming languages
(including dialects) and meta-programming tasks

• Typical solution: many different tools, lots of glue code

• Instead, we want this to all be in one language, i.e., the
“one-stop-shop”

• Rascal: domain specific language for program analysis,
program transformation, DSL creation

Picture from: http://www.mountainhighlands.com/listings/colabrese.html

Tuesday, November 20, 12

http://www.mountainhighlands.com/listings/colabrese.html
http://www.mountainhighlands.com/listings/colabrese.html

Usage Scenarios

• Parsing (briefly!)

• DSLs

• Software Repository Mining

• Program Analysis

• Visualization

• Many others...

Tuesday, November 20, 12

Parsing

Tuesday, November 20, 12

Parsing

• Rascal grammar definition language, GLL parsing

• Filtering rules written in Rascal provide disambiguation

• Example: C’s famous T *b, need a symbol table

• Other features: implode to AST, track source locations

• Parsing integrates with IDE support: provides parse
trees needed by IDE functionality, annotations on tree
trigger IDE functionality

Tuesday, November 20, 12

Domain-Specific
Languages

Tuesday, November 20, 12

Domain-Specific Languages

• DSLs support domain-level concepts, syntax familiar to
practitioners

• Many familiar examples from tech space: SQL for
database access, HTML for web pages, ATL for model
transformations

• Some not so familiar: S3QL in Bioinformatics, Cg for
graphics programming

7

Tuesday, November 20, 12

Another Domain: Digital Forensics (Jeroen van den Bos)

• From Wikipedia: “Digital forensics is a branch of
forensic science encompassing the recovery and
investigation of material found in digital devices, often in
relation to computer crime.”

• Challenges: need custom software, engineered to
specific requirements (including for legal reasons), that
performs well

• Research Question: can model-driven techniques be
used to create fast, maintainable digital forensics
software?

8

Tuesday, November 20, 12

File carving

• File carving is the process of recovering files without the
help of (file system) storage metadata.

• A file carver typically consists of two parts:

• The carver itself, which selects and/or combines
blocks of data from the input as candidate files.

• A set of format validators that determine whether a
candidate file is of any of the formats they validate.

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Describing File Formats in Derric

Data structure
ordering

Name and encoding/
type defaults

2. Sequence
Layout of individual
data structures

3. Structures1. Header

format PNG

strings ascii
size 1
unit byte
sign false
type integer
order lsb0
endian little

sequence

Signature
IHDR
(ITXT ICMT)*
PLTE?
IDAT
IDAT*
IEND

structures

IHDR {
 l: lengthOf(d)
 size 4;
 n: “IHDR”;
 d: { ... }
 c: checksum
(...) size 4; }

Slide from Jeroen van den Bos

Tuesday, November 20, 12

structures

Chunk {
 length: lengthOf(chunkdata) size 4;
 chunktype: type string size 4;
 chunkdata: size length;
 crc: checksum(algorithm="crc32-ieee",
 fields=chunktype+chunkdata) size 4;
 end: 0xFF3F;
}
IHDR = Chunk {
 chunktype: "IHDR";
 chunkdata: {
 width: !0 size 4;
 height: !0 size 4;
 bitdepth: 1|2|4|8|16;
 imagesize: (width*height*bitdepth)/8 size 4;
 interlace: 0|1;
 }
}

Describing File Formats in Derric

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Applying Derric
• Each format has one/several descriptions.

• Code generator uses descriptions:

• Applies (domain-specific) optimizations/
transformations.

• Runs quickly, so easy to rerun after changes.

• May output for multiple targets.

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Applying Derric
• Runtime system uses generated validators:

• Recognizes, extracts or ignores files.

• Implements algorithms and common optimizations.

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Excavating Architecture

Code
Generator

File CarverDerric
Descriptions

Format
Validators

produces input toinput to

storage
device

recovered
files

produces

input to

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Comparing to Existing Tools on a Set of
Benchmarks

0

15

30

45

60

Excavator ReviveIt PhotoRec Scalpel
Files Recovered (count) Processing speed (MB/second)

“Bringing Domain-Specific Languages to Digital Forensics”, van den Bos/van der Storm, ICSE’11.

Slide from Jeroen van den Bos

Tuesday, November 20, 12

Software Repository
Mining

Tuesday, November 20, 12

Repository Mining

• “The Mining Software Repositories (MSR) field analyzes
the rich data available in software repositories to
uncover interesting and actionable information about
software systems and projects.” -- MSR 2013
Homepage

• Repositories: version control, defect tracking,
communications between team members

• Uses: support maintenance, improve design, facilitate
reuse, empirical validation, prediction and planning

Tuesday, November 20, 12

Example: What Features are Used in PHP?

• Goal: determine which features are used in PHP
programs, what usage patterns are visible

• Special focus: which features are hard to analyze?

• Technique: extract system source from PHP
repositories, perform statistical analysis over code
bases of systems, use Rascal to identify interesting
parts of code that we can look at more closely

• Corpus: 19 systems, close to 3.4 million lines of PHP

Tuesday, November 20, 12

Results

• Of 109 language features, 7 are never used in the
corpus, while 35 are not used in 80% of the files

• Most PHP files are below 1300 lines of code

• Most uses of variable-variables can be resolved
statically (75% with systems that support PHP5)

• And more! (ask for the paper if you are interested...)

Tuesday, November 20, 12

Program Analysis

Tuesday, November 20, 12

Program Analysis

• Program analysis is an umbrella for a large number of
techniques to programmatically discover information
about programs

• Two camps: static and dynamic (with some mixing at
the borders)

• Many techniques: abstract interpretation, control-flow
analysis, data-flow analysis, augmented type systems
(including type and effect systems), constraints

• Many uses: bug finding, optimization, verification

Tuesday, November 20, 12

Example: Analysis of Lua Code (Reimer van Rozen)

• Lua is a popular scripting language, including for games

• Standard dynamic language challenges: no types,
checks at runtime, high flexibility can lead to
unexpected results

• Solution: static analysis of Lua in Rascal, with IDE
tooling

Tuesday, November 20, 12

EQuAEQuA
Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope
9. f("4") -- call f, bind c to "4"

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope
9. f("4") -- call f, bind c to "4"
10. print(a) -- 4, read global a

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope
9. f("4") -- call f, bind c to "4"
10. print(a) -- 4, read global a
11. d = 2 .. a -- coerces 2 to string

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope
9. f("4") -- call f, bind c to "4"
10. print(a) -- 4, read global a
11. d = 2 .. a -- coerces 2 to string
12. d = d / "12" -- coerces 12 to number

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

EQuAEQuA

1. function f(c) -- assign function to f
2. a = 1 -- creates global a
3. local b = true -- creates local b
4. a, b = b, a -- swap a and b
5. a, b = 1,2,3 -- discards 3
6. a, b = c -- implicitly deletes b
7. print(b) -- nil, undeclared b
8. end -- close scope
9. f("4") -- call f, bind c to "4"
10. print(a) -- 4, read global a
11. d = 2 .. a -- coerces 2 to string
12. d = d / "12" -- coerces 12 to number
13. print(c, d) -- nil 2, undeclared c

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12

Editor and analysis view

AST

Messages

Example: Lua IDE

Slide from Riemer van Rozen

Tuesday, November 20, 12

Example: Analysis of PHP (Ongoing Work)

• Eventual goal: full suite of PHP analysis tools

• Current work: the basics!

• Analysis of file includes

• Type inference

• Alias analysis

• Some promising initial work on statically resolving
includes, which are a dynamic property

Tuesday, November 20, 12

Visualization

Tuesday, November 20, 12

Slide from Paul Klint

Tuesday, November 20, 12

Tuesday, November 20, 12

Software Visualization: Execution Frequency

Credits: Steven Eick

Slide from Paul Klint

Tuesday, November 20, 12

Software Visualization: Revision Histories

Credits: Alex Telea, RUG

Slide from Paul Klint

Tuesday, November 20, 12

Software Visual Analytics

• Emerging field where data extracted from software
artifacts are visualized in order to

• Understand the software: Architecture? Component
dependencies?

• Identify parts with special properties: Most complex?
Most revisions? Test coverage?

• What if questions: What happens if we adapt this
part?

Slide from Paul Klint

Tuesday, November 20, 12

Rascal Visualization Design Principles

• Automatic & Domain-Specific: reduce low-level issues
(layout, size), automate mappings (e.g., axis, color
scale, ...), automate interaction support

• Reuse: treat figures and visual attributes as ordinary
values; can be parameters/result of functions, arbitrary
nesting of figures, well-defined composition of visual
attributes

Slide from Paul Klint

Tuesday, November 20, 12

Rascal Visualization Design Principles

• Compositionality: global visualization state (e.g. Pen
color) hinders composition, self-contained,
composable, visualizations

• Interactivity: enable Schneidermann's Mantra of
Overview First, Zoom and Filter, then Details-on-
demand, provide the GUI-elements (buttons, text
fields, ...) to achieve this.

Slide from Paul Klint

Tuesday, November 20, 12

And, of course, the ultimate goal...

Slide from Paul Klint

Tuesday, November 20, 12

Ideas for Assignments

Tuesday, November 20, 12

Assignment Ideas: Grab-bag, needs work...

• Parsing -- see Ali Afroozeh’s talk from November 13

• DSL construction -- challenge here is coming up with
something novel and useful in the limited timeframe

• Data-rich programming: add support for new formats,
like RDF -- challenge is you really need something
useful to do with it

• IDE support: can we use information in IDEs for other
languages to provide support similar to what we have
with Java?

36

Tuesday, November 20, 12

Assignment Idea #1: Taint Analysis in PHP
• Problem: user inputs in GET and POST should not be

used directly in database queries

• Solution: http://www.php.net/manual/en/
security.database.sql-injection.php

• Analysis: verify that, along all paths, steps are taken to
sanitize strings before they are used in queries

http://xkcd.com/327/
Tuesday, November 20, 12

http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/security.database.sql-injection.php
http://xkcd.com/327/
http://xkcd.com/327/

Assignment Idea #2: MSR
• Context: major changes from PHP4 to PHP5, many

upgraded systems

• Question 1: How have OO features been adopted?

• Question 2: Does this lead to differences in popular
code quality metrics?

• Question 3: Can information in the repository be tied
into support of new features and language changes?

• Question 4: Can we identify committers that are
improving quality metrics?

Tuesday, November 20, 12

• Rascal: http://www.rascal-mpl.org

• SEN1: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills

39

Thank you!
Any Questions?

Tuesday, November 20, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

