
Rascal: A One-Stop-Shop for Program Analysis 
and Transformation

Mark Hills

SET Seminar
November 20, 2012
Eindhoven, The Netherlands

http://www.rascal-mpl.org

Tuesday, November 20, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org


Rascal: A Meta-Programming One-Stop-Shop

• Context: wide variety of programming languages 
(including dialects) and meta-programming tasks

• Typical solution: many different tools, lots of glue code

• Instead, we want this to all be in one language, i.e., the 
“one-stop-shop”

• Rascal: domain specific language for program analysis, 
program transformation, DSL creation

Picture from: http://www.mountainhighlands.com/listings/colabrese.html
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Usage Scenarios

• Parsing (briefly!)

• DSLs

• Software Repository Mining

• Program Analysis

• Visualization

• Many others...

Tuesday, November 20, 12



Parsing
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Parsing

• Rascal grammar definition language, GLL parsing

• Filtering rules written in Rascal provide disambiguation

• Example: C’s famous T *b, need a symbol table

• Other features: implode to AST, track source locations

• Parsing integrates with IDE support: provides parse 
trees needed by IDE functionality, annotations on tree 
trigger IDE functionality
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Domain-Specific 
Languages
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Domain-Specific Languages

• DSLs support domain-level concepts, syntax familiar to 
practitioners

• Many familiar examples from tech space: SQL for 
database access, HTML for web pages, ATL for model 
transformations

• Some not so familiar: S3QL in Bioinformatics, Cg for 
graphics programming
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Another Domain: Digital Forensics (Jeroen van den Bos)

• From Wikipedia: “Digital forensics is a branch of 
forensic science encompassing the recovery and 
investigation of material found in digital devices, often in 
relation to computer crime.”

• Challenges: need custom software, engineered to 
specific requirements (including for legal reasons), that 
performs well

• Research Question: can model-driven techniques be 
used to create fast, maintainable digital forensics 
software?
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File carving

• File carving is the process of recovering files without the 
help of (file system) storage metadata.

• A file carver typically consists of two parts:

• The carver itself, which selects and/or combines 
blocks of data from the input as candidate files.

• A set of format validators that determine whether a 
candidate file is of any of the formats they validate.

Slide from Jeroen van den Bos
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Describing File Formats in Derric

Data structure 
ordering

Name and encoding/
type defaults

2. Sequence
Layout of individual 
data structures

3. Structures1. Header

format PNG

strings ascii
size 1
unit byte
sign false 
type integer
order lsb0
endian little

sequence

Signature
IHDR
(ITXT ICMT)*
PLTE?
IDAT
IDAT*
IEND

structures

IHDR {
 l: lengthOf(d)
      size 4;
 n: “IHDR”;
 d: { ... }
 c: checksum
(...) size 4; }

Slide from Jeroen van den Bos
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structures

Chunk {
  length: lengthOf(chunkdata) size 4;
  chunktype: type string size 4;
  chunkdata: size length;
  crc: checksum(algorithm="crc32-ieee",
                fields=chunktype+chunkdata) size 4;
  end: 0xFF3F;
}
IHDR = Chunk {
  chunktype: "IHDR";
  chunkdata: {
    width: !0 size 4;
    height: !0 size 4;
    bitdepth: 1|2|4|8|16;
    imagesize: (width*height*bitdepth)/8 size 4;
    interlace: 0|1;
  } 
}

Describing File Formats in Derric

Slide from Jeroen van den Bos
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Applying Derric
• Each format has one/several descriptions.

• Code generator uses descriptions:

• Applies (domain-specific) optimizations/
transformations.

• Runs quickly, so easy to rerun after changes.

• May output for multiple targets.

Slide from Jeroen van den Bos
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Applying Derric
• Runtime system uses generated validators:

• Recognizes, extracts or ignores files.

• Implements algorithms and common optimizations.

Slide from Jeroen van den Bos
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Excavating Architecture

Code
Generator

File CarverDerric
Descriptions

Format
Validators

produces input toinput to

storage
device

recovered
files

produces

input to

Slide from Jeroen van den Bos
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Comparing to Existing Tools on a Set of 
Benchmarks
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Excavator ReviveIt PhotoRec Scalpel
Files Recovered (count) Processing speed (MB/second)

“Bringing Domain-Specific Languages to Digital Forensics”, van den Bos/van der Storm, ICSE’11.

Slide from Jeroen van den Bos
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Software Repository 
Mining
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Repository Mining

• “The Mining Software Repositories (MSR) field analyzes 
the rich data available in software repositories to 
uncover interesting and actionable information about 
software systems and projects.” -- MSR 2013 
Homepage

• Repositories: version control, defect tracking, 
communications between team members

• Uses: support maintenance, improve design, facilitate 
reuse, empirical validation, prediction and planning
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Example: What Features are Used in PHP?

• Goal: determine which features are used in PHP 
programs, what usage patterns are visible

• Special focus: which features are hard to analyze?

• Technique: extract system source from PHP 
repositories, perform statistical analysis over code 
bases of systems, use Rascal to identify interesting 
parts of code that we can look at more closely

• Corpus: 19 systems, close to 3.4 million lines of PHP

Tuesday, November 20, 12



Results

• Of 109 language features, 7 are never used in the 
corpus, while 35 are not used in 80% of the files

• Most PHP files are below 1300 lines of code

• Most uses of variable-variables can be resolved 
statically (75% with systems that support PHP5)

• And more! (ask for the paper if you are interested...)
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Program Analysis
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Program Analysis

• Program analysis is an umbrella for a large number of 
techniques to programmatically discover information 
about programs

• Two camps: static and dynamic (with some mixing at 
the borders)

• Many techniques: abstract interpretation, control-flow 
analysis, data-flow analysis, augmented type systems 
(including type and effect systems), constraints

• Many uses: bug finding, optimization, verification
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Example: Analysis of Lua Code (Reimer van Rozen)

• Lua is a popular scripting language, including for games

• Standard dynamic language challenges: no types, 
checks at runtime, high flexibility can lead to 
unexpected results

• Solution: static analysis of Lua in Rascal, with IDE 
tooling
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EQuAEQuA
Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen

Tuesday, November 20, 12



EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope

Lua AiR Framework

Contextual Analysis Example
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope
9.  f("4")            -- call f, bind c to "4"

Lua AiR Framework

Contextual Analysis Example
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope
9.  f("4")            -- call f, bind c to "4"
10.  print(a)          -- 4, read global a

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope
9.  f("4")            -- call f, bind c to "4"
10.  print(a)          -- 4, read global a
11.  d = 2 .. a        -- coerces 2 to string

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope
9.  f("4")            -- call f, bind c to "4"
10.  print(a)          -- 4, read global a
11.  d = 2 .. a        -- coerces 2 to string
12.  d = d / "12"      -- coerces 12 to number

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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EQuAEQuA

1.  function f(c)     -- assign function to f
2.    a       = 1     -- creates global a
3.    local b = true  -- creates local b
4.    a, b    = b, a  -- swap a and b
5.    a, b    = 1,2,3 -- discards 3
6.    a, b    = c     -- implicitly deletes b
7.    print(b)        -- nil, undeclared b
8.  end               -- close scope
9.  f("4")            -- call f, bind c to "4"
10.  print(a)          -- 4, read global a
11.  d = 2 .. a        -- coerces 2 to string
12.  d = d / "12"      -- coerces 12 to number
13.  print(c, d)       -- nil 2, undeclared c

Lua AiR Framework

Contextual Analysis Example

Slide from Riemer van Rozen
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Editor and analysis view

AST

Messages

Example: Lua IDE

Slide from Riemer van Rozen
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Example: Analysis of PHP (Ongoing Work)

• Eventual goal: full suite of PHP analysis tools

• Current work: the basics!

• Analysis of file includes

• Type inference

• Alias analysis

• Some promising initial work on statically resolving 
includes, which are a dynamic property
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Visualization
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Slide from Paul Klint
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Software Visualization: Execution Frequency

Credits: Steven Eick

Slide from Paul Klint
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Software Visualization: Revision Histories

Credits: Alex Telea, RUG

Slide from Paul Klint
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Software Visual Analytics

• Emerging field where data extracted from software 
artifacts are visualized in order to

• Understand the software: Architecture? Component 
dependencies?

• Identify parts with special properties: Most complex? 
Most revisions? Test coverage?

• What if questions: What happens if we adapt this 
part?

Slide from Paul Klint
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Rascal Visualization Design Principles

• Automatic & Domain-Specific: reduce low-level issues 
(layout, size), automate mappings (e.g., axis, color 
scale, ...), automate interaction support

• Reuse: treat figures and visual attributes as ordinary 
values; can be parameters/result of functions, arbitrary 
nesting of figures, well-defined composition of visual 
attributes

Slide from Paul Klint
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Rascal Visualization Design Principles

• Compositionality: global visualization state (e.g. Pen 
color) hinders composition, self-contained, 
composable, visualizations

• Interactivity: enable Schneidermann's Mantra of 
Overview First, Zoom and Filter, then Details-on-
demand, provide the GUI-elements (buttons, text 
fields, ...) to achieve this.

Slide from Paul Klint
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And, of course, the ultimate goal...

Slide from Paul Klint
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Ideas for Assignments
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Assignment Ideas: Grab-bag, needs work...

• Parsing -- see Ali Afroozeh’s talk from November 13

• DSL construction -- challenge here is coming up with 
something novel and useful in the limited timeframe

• Data-rich programming: add support for new formats, 
like RDF -- challenge is you really need something 
useful to do with it

• IDE support: can we use information in IDEs for other 
languages to provide support similar to what we have 
with Java?

36
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Assignment Idea #1: Taint Analysis in PHP
• Problem: user inputs in GET and POST should not be 

used directly in database queries

• Solution: http://www.php.net/manual/en/
security.database.sql-injection.php

• Analysis: verify that, along all paths, steps are taken to 
sanitize strings before they are used in queries

http://xkcd.com/327/
Tuesday, November 20, 12
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Assignment Idea #2: MSR
• Context: major changes from PHP4 to PHP5, many 

upgraded systems

• Question 1: How have OO features been adopted?

• Question 2: Does this lead to differences in popular 
code quality metrics?

• Question 3: Can information in the repository be tied 
into support of new features and language changes?

• Question 4: Can we identify committers that are 
improving quality metrics?
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• Rascal: http://www.rascal-mpl.org

• SEN1: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills
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Thank you!
Any Questions?
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